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A B S T R A C T   

This study presents the first large-scale assessment of cyanobacterial frequency and abundance of surface water 
near drinking water intakes across the United States. Public water systems serve drinking water to nearly 90% of 
the United States population. Cyanobacteria and their toxins may degrade the quality of finished drinking water 
and can lead to negative health consequences. Satellite imagery can serve as a cost-effective and consistent 
monitoring technique for surface cyanobacterial blooms in source waters and can provide drinking water 
treatment operators information for managing their systems. This study uses satellite imagery from the European 
Space Agency’s Ocean and Land Colour Instrument (OLCI) spanning June 2016 through April 2020. At 300-m 
spatial resolution, OLCI imagery can be used to monitor cyanobacteria in 685 drinking water sources across 
285 lakes in 44 states, referred to here as resolvable drinking water sources. First, a subset of satellite data was 
compared to a subset of responses (n = 84) submitted as part of the U.S. Environmental Protection Agency’s 
fourth Unregulated Contaminant Monitoring Rule (UCMR 4). These UCMR 4 qualitative responses included 
visual observations of algal bloom presence and absence near drinking water intakes from March 2018 through 
November 2019. Overall agreement between satellite imagery and UCMR 4 qualitative responses was 94% with a 
Kappa coefficient of 0.70. Next, temporal frequency of cyanobacterial blooms at all resolvable drinking water 
sources was assessed. In 2019, bloom frequency averaged 2% and peaked at 100%, where 100% indicated a 
bloom was always present at the source waters when satellite imagery was available. Monthly cyanobacterial 
abundances were used to assess short-term trends across all resolvable drinking water sources and effect size was 
computed to provide insight on the number of years of data that must be obtained to increase confidence in an 
observed change. Generally, 2016 through 2020 was an insufficient time period for confidently observing 
changes at these source waters; on average, a decade of satellite imagery would be required for observed 
environmental trends to outweigh variability in the data. However, five source waters did demonstrate a sus
tained short-term trend, with one increasing in cyanobacterial abundance from June 2016 to April 2020 and four 
decreasing.   

1. Introduction 

Public water systems (PWSs) delivered over 23 billion gallons of 

surface water per day in 2015 for domestic water use in the United 
States, providing freshwater for services such as drinking, food prepa
ration, bathing, and landscaping (Dieter et al., 2018). These PWSs 
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served an estimated 283 million people in 2015, representing approxi
mately 87% of the United States population. Cyanobacterial blooms can 
degrade the quality of drinking water sources, and some blooms can 
contain toxins, called cyanotoxins, which pose a human health risk 
when occurring at elevated levels in finished drinking water. Whether a 
bloom contains cyanotoxins or not, high levels of cyanobacteria in 
source water can necessitate that drinking water systems simultaneously 
address multiple treatment objectives including managing taste and 
odor concerns, cyanotoxin breakthrough, and disinfection byproduct 
(DBP) formation (U.S. EPA, 2016a). 

In recent years, cyanobacterial blooms have resulted in several large- 
scale drinking water advisories. In September 2013, a cyanobacterial 
bloom along the western shore of Lake Erie resulted in nearly two 
thousand people being left without access to clean drinking water in the 
Carroll Township in Ohio (GLCR, 2013). Toledo, Ohio, issued a 
multi-day “Do Not Drink” advisory for more than 500,000 people in 
2014 because of elevated cyanotoxins found in their finished drinking 
water (Great Lakes Commission, 2014). In 2018, the city of Salem, 
Oregon, was under a “Do Not Drink” advisory applying to vulnerable 
populations for several weeks, affecting several hundreds of thousands 
of people, after elevated levels of the cyanotoxins microcystins and 
cylindrospermopsin were found in its finished drinking water (The 
Novak Consulting Group, 2018). 

Conventional drinking water treatment (e.g., coagulation, floccula
tion, filtration) has been proven effective in removing cyanobacterial 
cells and intracellular cyanotoxins (Szlag et al., 2015; U.S. EPA, 2016a). 
However, additional treatment approaches are typically necessary in the 
presence of extracellular toxins. Ultimately, the possibility of cyanotoxin 
breakthrough to finished drinking water is dependent on multiple fac
tors, including the type and amount of toxins present as well as the 
treatment approaches, management, and operations drinking water 
treatment plants use to respond to a bloom in source waters. 

PWSs may benefit from any advance knowledge regarding cyano
bacterial bloom development in their source waters to prepare for, and if 
possible, mitigate the risks posed by blooms to finished drinking water. 
The implementation of early warning indicators (EWIs) has proven 
effective in managing cyanobacterial blooms, allowing managers to 
proactively make critical decisions to prevent further bloom prolifera
tion (Pace et al., 2017; Wilkinson et al., 2018). EWIs are typically 
focused on measuring known drivers of cyanobacterial blooms where a 
certain predetermined threshold must be met before triggering the EWI. 

Satellite imagery is a cost-effective and standardized monitoring 
technique for cyanobacterial blooms (e.g., Coffer et al., 2020, 2021; 
Dekker and Hestir, 2012; Hunter et al., 2009; Kahru and Elmgren, 2014; 
Kutser et al., 2006; Matthews and Bernard, 2015; Mishra et al., 2019; 
Papenfus et al., 2020; Stroming et al., 2020; Stumpf et al., 2016a,b; 
Urquhart et al., 2017), including for drinking water sources (Clark et al., 
2017). While satellite imagery is typically not used to measure drivers of 
cyanobacterial blooms, it can provide consistent temporal coverage of 
cyanobacterial abundance and can serve a similar purpose as EWIs. 
Advance knowledge can alert drinking water managers to blooms in 
their source waters, indicating a need for cyanotoxin sampling in source 
and finished water. Results of that sampling could guide managers in 
implementing mitigation strategies in the source water itself, optimizing 
existing treatment approaches, or implementing additional treatment, 
with the goal of reducing the risk of cyanotoxins breaching the treat
ment system. 

Motivated by concern for the effect of cyanobacterial blooms on 
drinking water quality, this study uses satellite imagery to assess the 
frequency and abundance of cyanobacteria at surface source waters for 
nearly 700 drinking water intakes across 44 states in the continental 
United States. Additionally, this study investigates the potential 
connection at a subset of these source waters between satellite remotely 
sensed data and a subset of qualitative visual observations collected 
under the fourth Unregulated Contaminant Monitoring Rule (UCMR 4). 
UCMR 4 qualitative responses assessed whether an algal bloom was 

visible near the intake within a month of quantitative finished drinking 
water sampling; this study considered a subset of these responses 
collected from March 2018 through November 2019. Satellite data were 
obtained from the European Space Agency’s (ESA) Ocean and Land 
Colour Instrument (OLCI) onboard the Sentinel-3A satellite from June 
2016 through April 2020. The following research objectives were 
addressed: 

1 Using a subset of observable drinking water sources, assess agree
ment between satellite-derived cyanobacterial abundance and 
qualitative visual reporting of algal bloom presence and absence 
collected as part of UCMR 4.  

2 Using satellite imagery collected at all resolvable drinking water 
sources, quantify average annual frequency of cyanobacterial blooms 
for the year 2019.  

3 Using satellite imagery collected at all resolvable drinking water 
sources, analyze short-term trends in cyanobacterial abundance from 
June 2016 through April 2020. 

2. Data and methods 

2.1. Satellite observations 

Satellite observations were obtained from OLCI onboard the 
Sentinel-3A satellite, launched in February 2016. OLCI offers a revisit 
frequency of approximately 2 to 3 days and a spatial resolution of 300 m 
at nadir, where nadir is defined as the point on Earth’s surface directly 
below the satellite. Data are collected in 21 spectral bands with center 
wavelengths ranging from 400 to 1020 nanometers (nm). Standard OLCI 
Level-1B data (calibrated top-of-atmosphere radiances) were first ob
tained from ESA through the Copernicus program and were then pro
cessed to Level-2 imagery (surface reflectances) by the National 
Aeronautics and Space Administration (NASA) Ocean Biology Process
ing Group (OBPG; https://oceandata.sci.gsfc.nasa.gov). Following 
Urquhart and Schaeffer (2020) criteria for satellite pixel inclusion and 
exclusion, satellite pixels were quality flagged and discarded if they 
contained cloud cover, fell along the land-water interface, were adjacent 
to a land pixel, contained snow or ice, or contained mixed land and 
water signals. Removing pixels along the land-water interface and those 
adjacent to a land pixel ensures the shallowest portions of most lakes 
(ranging from 300 to 600 m from shore) are not considered, reducing the 
possibility of bottom reflectance being measured by the satellite sensor. 
Satellite pixels that were not quality flagged and discarded based on 
these criteria were considered valid. 

This study focuses on the Cyanobacteria Index product (CI-cyano). 
The CI-cyano algorithm leverages spectral bands centered at 665 nm, 
681 nm, and 709 nm to assess bloom biomass (Wynne et al., 2008), and 
those centered at 620 nm, 665 nm, and 681 nm as exclusion criteria to 
prevent the misidentification of non-cyanobacterial blooms, as reflec
tance at 620 nm is sensitive to phycocyanin (Lunetta et al., 2015). 
Graham et al. (2008) described potential distributions of cyanobacteria 
within the water column, which included cyanobacteria at a specific 
depth within the water column, cyanobacteria evenly distributed within 
the water column, and cyanobacteria as surface scums. Surface scums 
occur when cyanobacteria float on top of the water’s surface and have 
optical properties similar to land vegetation (Kutser, 2009; Shi et al., 
2017); thus, in our approach, surface scums will likely be quality flagged 
as mixed pixels and discarded before further analysis. Instead, the 
CI-cyano algorithm characterizes cyanobacteria within the upper layer 
of the water column, including cyanobacteria at depths of up to 2 m in 
clear water (Mishra et al., 2005) and less than 2 m in more turbid water 
(Wynne et al., 2010). Coffer et al. (2020) details the evolution of the 
CI-cyano including the differentiation between cyanobacterial blooms 
and other algae defined by Matthews et al. (2012). 

Observations were aggregated into weekly composites preserving the 
maximum CI-cyano value for each pixel. The standard CI-cyano product 
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was converted to cyanobacterial abundance, in units of cells/mL, as CI- 
cyano × 108 as described in Lunetta et al. (2015). This conversion factor 
was defined based on a relationship between the satellite-derived cya
nobacterial index and surface water samples of Microcystis spp. cell 
counts in western Lake Erie. Throughout this study, a bloom detected by 
satellite imagery is defined as any cyanobacterial abundance that ex
ceeds the detection limit of the sensor, which is preliminarily estimated 
to be between 10,000 and 20,000 cells/mL. 

In the United States, CI-cyano has been validated quantitatively 
against cyanobacteria cell counts and chlorophyll-a across several states, 
including Florida, Ohio, Rhode Island, Massachusetts, New Hampshire, 
Vermont, Connecticut, and Maine (Clark et al., 2017; Lunetta et al., 
2015); from 25 state health advisories in California, Oregon, New York, 
Idaho, New Jersey, Utah, and Vermont (Schaeffer et al., 2018); and as 
presence and absence (Mishra et al., 2021). Additionally, CI-cyano has 
been successfully demonstrated for state (Clark et al., 2017; Urquhart 
et al., 2017) and national (Coffer et al., 2020, 2021) assessments of 
cyanobacterial occurrence within the United States. CI-cyano has also 
been used by several states to issue recreational advisories; for example, 
the Wyoming Department of Environmental Quality issued such recre
ational advisories at Big Sandy Reservoir (Wyoming DEQ, 2018a), Eden 
Reservoir (Wyoming DEQ, 2018b), and Pathfinder Reservoir (Wyoming 
DEQ, 2018c). Coffer et al. (2020) also demonstrated expected season
ality via CI-cyano across 46 states. 

Early iterations of the CI-cyano algorithm have been used for 
assessing cyanobacterial blooms in Lake Balaton, Hungary (Palmer 
et al., 2015), and the Caspian Sea (Moradi, 2014). Jin et al. (2017) 
leveraged the cyanobacteria index first defined in Wynne et al. (2008) to 
assess cyanobacteria presence and absence at Lakes Taihu and Chaohu 
in China. Other spectral index algorithms have been used to derive 
chlorophyll or cyanobacterial biomass based on reflectances in the red 
through near-infrared portions of the electromagnetic spectrum, such as 
the Maximum Peak Height (MPH) algorithm developed using imagery 
from ESA’s MEdium Resolution Imaging Spectrometer (MERIS) for four 

African study sites (Matthews et al., 2012; Matthews and Odermatt, 
2015); the Maximum Chlorophyll Index (MCI) also developed using 
MERIS imagery but in waters surrounding Vancouver Island in Canada 
(Gower et al., 2005); and the Floating Algae Index (FAI) developed using 
imagery from NASA’s Moderate Resolution Imaging Spectroradiometer 
(MODIS) in the western Yellow Sea near Qingdao, China (Hu, 2009). 

There are 2196 lakes and reservoirs across 46 states in the conti
nental United States that can be observed given the spatial resolution of 
OLCI (Fig. 1; Urquhart and Schaeffer, 2020). Lakes and reservoirs were 
required to be of sufficient size and shape to accommodate at least one 
300-m water-only satellite pixel after the exclusion criteria described 
above. These range in size from 1.3 km2 to over 4000 km2, limiting this 
analysis to relatively large lakes and reservoirs across the United States. 
Hereafter, lakes and reservoirs will be referred to exclusively as lakes, 
and those lakes that can be observed with 300-m satellite imagery are 
referred to as observable lakes. 

2.2. Resolvable drinking water intake locations 

Surface intake locations extracted from the Safe Drinking Water In
formation System (SDWIS) database were previously described in Clark 
et al. (2017). Locations of drinking water intakes for each PWS facility 
are based on information contained in the SDWIS database. This 
assigned location will hereafter be referred to as the drinking water 
intake location or drinking water intake. These drinking water intakes 
were first subset to include just those within 100 m of an observable lake 
following Clark et al. (2017). A total of 877 drinking water intake lo
cations were within 100 m of an observable lake. These locations were 
then subset to include just those within 900 m of a valid satellite pixel, a 
slight variation from Clark et al. (2017), selected to represent a mini
mum distance of three 300-m pixels in each direction. This left 685 
drinking water intake locations, corresponding to 285 lakes across 44 
states (Fig. 1). These remaining 685 drinking water intakes are referred 
to as resolvable drinking water intakes. 

Fig. 1. A total of 285 lakes across 44 states in the continental United States contain drinking water intakes and are observable given the spatial resolution of OLCI 
(300 m). Green polygons indicate the density of these lakes per 100 km2, where lighter green indicates a lower density of observable lakes per area and darker green 
indicates a higher density of observable lakes per area. Polygons with a purple border represent the 11 lakes across 6 states that also contain drinking water intakes 
where UCMR 4 qualitative responses were collected from March 2018 through November 2019. Lakes with drinking water intakes displayed in this figure are 
grouped spatially to protect the locations of the drinking water intakes. 
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Drinking water intakes that were within 100 m of an observable lake 
and within 900 m of a valid satellite pixel are referred to as resolvable 
drinking water intakes. Drinking water sources refer to the aggregated 
satellite pixels in an observable lake within the immediate vicinity of the 
drinking water intake location. For each of these resolvable drinking 
water intake locations, source waters were characterized by selecting all 
valid satellite pixels intersecting or falling within a 900-m buffer of the 
intake (Fig. 2). 

2.3. UCMR 4 qualitative responses 

The U.S. Environmental Protection Agency (EPA) collects nationally 
representative finished drinking water data for unregulated contami
nants suspected to be present and pose a health risk in drinking water 
under the Unregulated Contaminant Monitoring Rule (UCMR) program 
(U.S. EPA, 2016b,c). This monitoring is used by the U.S. EPA to un
derstand the frequency and level of occurrence of unregulated con
taminants in the Nation’s PWSs. As part of a Safe Drinking Water Act 
mandate, every five years the U.S. EPA develops a new list of UCMR 
contaminants. 

UCMR 4 required monitoring for 30 chemicals between 2018 and 
2020. This included monitoring for 10 cyanotoxins in finished water as 
well as qualitative data collected regarding the presence of an algal 
bloom and other characteristics in source waters around the same time 
as the quantitative sample collection. Cyanotoxin monitoring as part of 
UCMR 4 was required to be conducted twice a month for each PWS for 
four consecutive months, excluding the months of December, January, 
and February, and was required to be collected during one single year 
between 2018 and 2020. UCMR 4 cyanotoxin monitoring was required 
at all large public water systems (i.e., systems serving more than 10,000 
customers) and a small, statistically representative subset of small sys
tems that use surface water as their sources. A subset of UCMR 4 re
sponses was obtained from the first quarter of 2020 (https://www.epa. 
gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-ru 
le). Given the temporal lag between data collected by the PWS and data 
available for distribution, this dataset was obtained in April 2020 but 
only contained data from March 2018 through November 2019 and does 
not represent all the data collected during that timeframe. 

This study is not utilizing the quantitative UCMR 4 cyanotoxin 
finished water data; instead it utilizes responses provided at the time of 
finished water monitoring in which the PWS was asked: “Preceding the 
finished water sample collection, did you observe an algal bloom in your 
source waters near the intake?” Only responses to this question of “Yes,” 

“No,” or “Don’t know” were considered. Hereafter, these responses will 
be referred to as UCMR 4 qualitative responses. Some PWSs did not 
respond, while several PWSs recorded multiple responses over the time 
period. This resulted in 92 UCMR 4 qualitative responses for comparison 
to satellite imagery. 

If the PWS responded “Yes,” they were asked to specify when the 
algal bloom was observed. Available responses included the day the 
UCMR 4 cyanotoxin sample was collected, between the day the sample 
was collected and the past week, between the past week and the past 
month, between the past month and the past 12 months, and more than a 
year ago. Each PWS was asked to select all that applied. When PWSs 
responded “Yes,” this study considered algal blooms observed between 
the day the cyanotoxin sample was collected and the past month in an 
effort to include as many UCMR 4 responses as possible. Including ob
servations between the day the sample was collected and the past month 
can lead to limitations in the temporal matchup between UCMR 4 
qualitative responses and satellite observations; however, this does not 
necessarily mean that satellite observations and UCMR 4 responses were 
one a month apart, but sometime within the previous month. Lunetta 
et al. (2015) found the best correspondence between satellite data and 
field observations of cyanobacterial abundance was within a 2-week 
window of the satellite overpass, which is similar to the 4-week win
dow used here for cyanobacterial presence and absence. Additionally, it 
is not possible to confirm that UCMR 4 qualitative responses identified 
the presence of cyanobacterial blooms specifically rather than algal 
blooms more generally, which could lead to false positive and false 
negative situations when compared to satellite-derived cyanobacteria 
presence and absence. Despite potential temporal limitations, these vi
sual observation responses provided via UCMR 4 are ideal for satellite 
comparison given that the satellite signal in our spectral region of in
terest also only represents the water’s surface. While not a validation, 
this comparison is useful for assessing satellite-derived results against 
user perception within our target audience of PWS managers. 

After identifying the drinking water intake locations corresponding 
to each UCMR 4 qualitative response, intake locations were subset to 
those identified as resolvable as described in Section 2.2. A total of 22 
intakes with UCMR 4 responses from March 2018 through November 
2019 corresponded to a resolvable drinking water intake location, rep
resenting 11 lakes across 6 states (Fig. 1). Low spatial coverage of UCMR 
4 qualitative responses is the result of both sample design and sample 
reporting. While all large surface water systems were required to sample 
cyanotoxins in finished water as part of UCMR 4, only 800 small systems 
were required to sample. Additionally, not all PWS submitted qualitative 

Fig. 2. A conceptual diagram illustrating data extraction at each drinking water intake location. For a drinking water intake to be considered resolvable, it must first 
(A) fall within a 100-m buffer of the lake boundary, and then it must (B) fall within 900 m of a valid satellite pixel. (C) All valid pixels that intersect or fall within a 
900-m buffer of the intake location represent the drinking water sources and were selected for analysis. 
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source water data as part of their UCMR 4 finished water cyanotoxin 
sampling. Drinking water intakes assigned to the systems sampled then 
needed to correspond to a lake observable with 300-m satellite imagery 
and fit the selection criteria described in Section 2.3. Spatial coverage of 
these locations will likely improve as all UCMR 4 data becomes 
available. 

2.4. Comparing UCMR 4 qualitative responses to satellite observations 

Satellite data were extracted for each UCMR 4 qualitative response 
location by taking the average CI-cyano value of all valid pixels con
tained within a 900-m buffer of the drinking water intake as descried in 
Section 2.2. Each date associated with the UCMR 4 quantitative sam
pling was matched to the corresponding satellite weekly composite. To 
assess the agreement between the two datasets, two approaches were 
used. First, a presence-absence agreement matrix was developed to 
compare, on a class-by-class basis, binary satellite data and binary 
UCMR 4 qualitative responses. Overall agreement was computed as the 
number of instances that generated the same response in both satellite 
data and UCMR 4 qualitative responses normalized to the total number 
of instances considered. The Kappa coefficient was computed to indicate 
how well the two datasets agreed compared to a random assignment of 
classes (Cohen, 1960; Goodman and Kruskal, 1954). Kappa is a ratio 
between − 1 and 1 where higher values indicate better agreement and 
was computed via the fmsb package in R version 4.0.0 (Nakazawa, 2019; 
R Core Team, 2020). 

Next, the non-parametric Mann-Whitney U test was used to assess if 
cyanobacterial abundance values for UCMR 4 qualitative responses of 
“Yes” and “No” were generated from the same population (Mann and 
Whitney, 1947; Wilcoxon, 1945). A nonparametric approach is required 
here for several reasons: the data are not normally distributed, the 
sample size is relatively small, and the satellite observations contain 
non-detects. Cohen’s d was then used to quantify the effect size (Cohen, 
1992) via the effsize package in R version 4.0.0 (R Core Team, 2020; 
Torchiano, 2020), where, generally, absolute values above 0.5 indicate a 
“large” difference between the two means. 

2.5. Assessing bloom frequency at all resolvable drinking water sources 

To assess the frequency of cyanobacterial blooms at all resolvable 
source waters near each drinking water intake (see Fig. 2), satellite 
observations were aggregated into annual detections. Temporal fre
quency was computed per pixel following Coffer et al. (2021) as the 
proportion of valid satellite pixels that indicate either a detection of 
cyanobacteria (i.e., those above the detection limit of the sensor) or 
non-detection; invalid pixels are those with quality flags and were not 
included in the bloom frequency computation (Eq. (1)). In other words, 
bloom frequency is simply the cyanobacteria detected pixels divided by 
the total number of detect and non-detect pixels, excluding invalid 
quality flagged pixels. This produces a percentage between 0% and 
100%, where 0% indicates no bloom was present at that pixel for the 
given year when satellite imagery was available and 100% indicates a 
bloom was always present at that pixel for the given year when satellite 
imagery was available. At each drinking water source, annual bloom 
frequency for the year 2019 represented the average bloom frequencies 
for all pixels contained within a 900-m buffer of each drinking water 
intake. 

Bloom frequency = 100 ×
n of pixels with detectable CI-cyano

n of all valid pixels
(1)  

2.6. Quantifying effect size at all resolvable drinking water source waters 

To quantify effect size at all resolvable drinking water source waters, 
a γ statistic was used which is conceptually equivalent to Cohen’s d and 
has been used for several environmental applications (Coffer and Hestir, 

2019; Henson et al., 2010; Urquhart et al., 2017). In this study, this 
statistic was used to determine the number of observations needed for a 
trend in the data to be sustained despite the residual variability in the 
data and can provide insight into how many years of data are needed to 
increase confidence in an observed change. If γ is less than the time 
period of observations, the magnitude of the trend exceeds the residual 
variability in the data. 

To compute γ, cyanobacterial abundance values were first extracted 
within the previously described 900-m buffer of each drinking water 
intake. Cyanobacterial abundance values for all pixels contained in or 
intersecting this buffer were averaged for each weekly composite sat
ellite image. Weekly averages were assigned months based on the 
middle day of the week, and monthly averages were computed for June 
2016 through April 2020. These monthly averages were used to quantify 
γ at each intake, and those with a γ of less than four years were 
considered for a trend analysis. The γ statistic was computed following 
Eq. (2) as: 

γ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

1
(y− ŷ)2

n− 1

√

|m|
(2)  

where n is the sample size, ŷ represents the residuals of y, and m is the 
Thiel-Sen Slope. 

The Thiel-Sen slope determines the magnitude of the trend by 
computing the slope for all pairs of data and taking their median (Sen, 
1968; Theil, 1992). Relatively short time series have been used in pre
vious studies for trend detection. Kim et al. (2007) assessed linear trends 
in air quality using three and five years of satellite data. Psilovikos et al. 
(2006) analyzed trends in water quality using three years of field ob
servations. To assess short-term trends at each drinking water source, 
the nonparametric seasonal Mann Kendall test for trend and the asso
ciated Thiel-Sen slope were computed. The seasonal Mann Kendall test 
for trend is a variation of the Mann Kendall test for trend (Kendall, 1955; 
Mann, 1945), checking for a monotonic increase or decrease across the 
time series. The trend analysis was performed via the rkt package in R 
version 4.0.0 (Marchetto, 2017; R Core Team, 2020). 

3. Results 

3.1. Agreement between UCMR 4 qualitative responses and satellite 
observations 

Of the 92 UCMR 4 qualitative responses in drinking water sources 
corresponding to satellite imagery, in responding to the question of 
whether there was an algal bloom preceding the sampling event, 8 
responded “Don’t know,” 76 responded “No,” and 8 responded “Yes.” 
Those that responded “Yes” indicated this algal bloom was present be
tween the day of quantitative sampling and the past month. 72 of the 76 
UCMR 4 qualitative responses of “No” in drinking water sources corre
sponded to an absence of cyanobacteria in satellite imagery, and 7 of the 
8 UCMR 4 qualitative responses of “Yes” in drinking water sources 
corresponded to a presence of cyanobacteria in satellite imagery 
(Table 1). Thus, there were five UCMR 4 qualitative responses in 
drinking water sources that disagreed with satellite imagery, one in 
which the UCMR 4 qualitative response in drinking water sources 
indicated a bloom was present while satellite imagery indicated a bloom 

Table 1 
An agreement matrix analyzing algal bloom presence and absence as indicated 
by UCMR 4 qualitative responses in drinking water sources and cyanobacteria 
detect and non-detect as indicated by satellite imagery.   

Satellite-derived cyanobacteria 
UCMR 4 qualitative response Detect Non-detect 

Algal bloom observed 7 1 
Algal bloom not observed 4 72  
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was absent and four in which the UCMR 4 qualitative responses in 
drinking water sources indicated a bloom was absent and satellite im
agery indicated a bloom was present. This corresponded to an overall 
agreement of 94% and a Kappa coefficient of 0.70. 

In addition to cyanobacterial presence and absence, the satellite- 
derived cyanobacterial abundance was analyzed for each of the 92 
UCMR 4 qualitative responses in drinking water sources (Fig. 3). For all 
UCMR 4 qualitative responses in drinking water sources in which the 
observer did not know if an algal bloom was present, satellite imagery 
indicated non-detection of cyanobacteria. When UCMR 4 qualitative 
responses in drinking water sources indicated an algal bloom was not 
observed, median cyanobacterial abundance corresponded to the 
detection limit of the satellite imagery. When UCMR 4 qualitative re
sponses in drinking water sources indicated an algal bloom was 
observed, median cyanobacterial abundance exceeded 1,200,000 cells/ 
mL. Results of the Mann Whitney U test and associated Cohen’s d indi
cate satellite-estimated cyanobacterial abundance corresponding to 
UCMR 4 qualitative responses of “Yes” and “No” are not derived from 
the same population (U = 82, n = 84, Cohen’s d = − 4.14). This indicates 
that visual observations during UCMR 4 monitoring and satellite ob
servations have strong agreement in assessing cyanobacterial occur
rence at drinking water source waters. 

3.2. Bloom frequency at drinking water sources 

For the year 2019, average annual bloom frequency was assessed at 
all 685 resolvable drinking water sources, not just those corresponding 
to UCMR 4 qualitative responses. For each weekly composite, an average 
of 19 satellite pixels were considered within a 900-m buffer of each 

drinking water intake to compute average annual bloom frequency. 
Average bloom frequency in 2019 peaked at 100%, meaning that for all 
valid satellite pixels, the average of those closest to the intake always 
indicated a cyanobacterial bloom was present (Fig. 4A). Average bloom 
frequency reached 100% at source waters in Morgan Lake, New Mexico, 
and Grand Lake, Ohio (commonly referred to as Grand Lake St. Mary’s), 
throughout the entire year in 2019. Despite relatively high average 
bloom frequency within 900 m at several intakes, the majority of the 
distribution fell below the third quartile at 13%, and the median was 
2%. Outliers existed at source waters with an average frequency above 
35%. 

The four states with the maximum number of resolvable drinking 
water sources were selected to demonstrate cyanobacterial frequency in 
more detail (Fig. 4B); similar results can be generated for any boundary, 
including states, nations, or ecoregions. Texas is located in the southern 
United States bordering Mexico and the Gulf of Mexico. Texas’s climate 
is characterized primarily as subtropical in its central and eastern por
tions and as arid desert in its western portions. New York is located in 
the northeast United States, sharing a border with Canada and extending 
to the Atlantic Ocean. New York’s climate is characterized almost 
entirely as humid continental. California is located along the Pacific 
coast, and the southern portion of the state also shares a border with 
Mexico. Most of California is characterized as having a Mediterranean 
climate, but some southeastern portions of the state are characterized as 
desert and semi-arid. Oklahoma is located just north of Texas and its 
climate is primarily characterized as humid subtropical. 

Texas contains 130 resolvable intakes whose statewide average 
bloom frequency was 18.3% in 2019, exceeding the third quartile of all 
resolvable intakes for the same period of time. Three source waters had 
an average bloom frequency of 80% in 2019 while all others were below 
70%. New York contains 96 resolvable intakes which averaged the 
lowest statewide bloom frequency in 2019 of these four states at only 
1.74%, equivalent to the median of all resolvable source waters. The 
resolvable source waters with the highest average bloom frequency in 
New York were below 20%. California contains 75 resolvable intakes 
that exhibited a statewide average bloom frequency of 3.26% in 2019. 
Two source waters had the highest average frequencies for this state 
with values of 50%. Over half of the resolvable source waters in Cali
fornia had an average bloom frequency of 0% for 2019. Oklahoma 
contains 71 resolvable intakes that exhibited a statewide average bloom 
frequency of 4.63% in 2019. The source waters that exhibited the 
highest average bloom frequency had a value below 50%, and many of 
the subsequently ranked source waters showed relatively high average 
bloom frequencies compared to New York and California. 

3.3. Analysis of effect size at drinking water sources 

Effect size was analyzed at all 685 resolvable drinking water sources, 
as described in Section 2.6. There were five source waters that were 
excluded due to low temporal coverage as they did not contain at least 
four observations for any given month in that time period. This left 680 
resolvable source waters to include in the analysis of effect size. A trend 
analysis was first applied to average monthly frequencies, but no source 
waters had an effect size indicative of a sustained change (i.e., γ ≤ 4 
years), so this metric was not considered further. Instead, a trend anal
ysis was applied to average satellite-derived cyanobacterial abundance 
values (cells/mL). Thus, results presented here indicate changes in 
satellite-derived cyanobacterial abundance estimates; more data would 
be needed to identify changes in temporal frequency. 

A time period of four years did not provide sufficient cyanobacterial 
abundance data to determine a sustained trend amid inherent variability 
in the data for nearly all resolvable source waters. Based on the observed 
variability, a median temporal data collection period of just over a 
decade would be needed to assess trends, given the same sampling fre
quency (Fig. 5). The nature of the γ statistic requires a detectable slope in 
order for this statistic to be quantified, and a relatively small slope will 

Fig. 3. Boxplots representing satellite-derived cyanobacterial abundance cor
responding to fourth Unregulated Contaminant Monitoring Rule (UCMR 4) 
qualitative responses in drinking water sources. Gray boxes represent the 25th 
percentile, median, and 75th percentile; top whiskers represent 1.5 times the 
interquartile range from the 75th percentile; black dots represent outliers that 
fall outside this range. Satellite-derived cyanobacterial abundance was aver
aged within a 900-m buffer of drinking water intakes containing UCMR 4 data. 
UCMR 4 qualitative responses in drinking water sources (n = 92) of “Don’t 
know,” “No,” and “Yes” were considered regarding whether a visible algal 
bloom was present within one month of quantitative sampling. 
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result in a very large γ. Thus, a cutoff on γ of 50 years was selected for 
Fig. 5 to focus the analysis on more achievable monitoring time periods, 
which resulted in a subset of 36 intakes being selected for computing the 
median γ statistic. 

Five source waters did exhibit an effect size indicative of a sustained 
trend from June 2016 through April 2020 (γ ≤ 4 years), but conclusions 
cannot be drawn regarding changes that may have occurred outside of 
this time period (Table 2, Fig. 6). Source waters at Morgan Lake in New 
Mexico (NM) increased in average cyanobacterial abundance by 60% 
per year from 2016 to 2020, and a γ of 3 years indicates that this increase 
represents a sustained trend. Source waters at Lake Overholser in 
Oklahoma (OK), Grand Lake in Ohio (OH), Choke Canyon Reservoir in 
Texas (TX), and Lake Eufaula, OK, decreased in cyanobacterial abun
dance from 2016 to 2020. Lake Overholser, OK, decreased by 30% per 
year and exhibited the lowest γ of the entire dataset, requiring only 1 
year of observations to draw a conclusion about the observed trend. 
Grand Lake, OH, decreased in cyanobacterial abundance by only 10% 
per year, but the γ statistic still supported a sustained trend requiring 3 
years of data. Both Choke Canyon Reservoir, TX, and Lake Eufaula, OK, 
decreased by 20% per year and required 3 years of observations for the 
trend to overcome residual variability in the data. 

4. Discussion 

4.1. Comparison of satellite-derived data with field observations 

This study serves as the first quantitative comparison between sat
ellite remote sensing data and UCMR 4 qualitative responses, providing 
an assessment of two independent approaches for assessing the presence 

of cyanobacterial blooms in drinking water sources. Agreement between 
UCMR 4 qualitative responses in drinking water sources of algal pres
ence and satellite-derived cyanobacterial abundances increases confi
dence in both the accuracy of PWS samplers’ visual interpretation of 
algal blooms and the use of satellite imagery for detecting cyanobacteria 
at surface source waters. A Kappa coefficient of 0.70 was found between 
the two datasets. Kappa coefficients between 0.60 and 0.79 are 
considered to have a moderate level of agreement (McHugh, 2012). 

While 79 responses agreed between the two datasets, there were five 
disagreements. However, in the absence of field measured cyanobacte
rial abundance, discrepancies between satellite-estimated cyanobacte
rial presence and UCMR 4 qualitative responses cannot be reconciled 
with complete certainty. In four cases, UCMR 4 qualitative responses in 
drinking water sources recorded no visual observation of an algal bloom, 
but corresponding satellite measurements indicated cyanobacteria de
tections were present. At these four cases, at least one of the pixels 
extracted within a 900-m buffer of the intake had a non-detect, but other 
pixels within the 900-m buffer did have detects, resulting in the aggre
gation of these pixels indicating cyanobacteria presence. Thus, the 
discrepancy could partially be explained by spatial mismatches between 
the exact visual observations and the 900-m buffer. Additionally, tem
poral offset between the two datasets could exist. 

In one case, UCMR 4 qualitative responses in drinking water sources 
recorded a bloom, but corresponding satellite measurements indicated 
non-detect. For this sample, the UCMR 4 qualitative response in drinking 
water sources to the question “Preceding the finished water sample 
collection, did you observe an algal bloom in your source waters near 
the intake?” was that an algal bloom was observed between the past 
week and past month. A temporal offset could explain this discrepancy, 

Fig. 4. (A) Distribution of average cyanobacterial bloom frequency for 2019 within 900 m of all 685 resolvable drinking water intakes across the United States. Gray 
boxes represent the 25th percentile, median, and 75th percentile; top whiskers represent 1.5 times the interquartile range from the 75th percentile; black dots 
represent outliers that fall outside this range. (B) Average cyanobacterial bloom frequency for 2019 within 900 m of resolvable drinking water intakes in the states of 
Texas, New York, California, and Oklahoma. The length of the x-axis reflects the number of resolvable intakes in each state. Average bloom frequency for all 
resolvable source waters in each state is represented by the dashed line. 
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or a bloom could have been present below the detection limit of the 
satellite sensor. Additionally, it is possible to have cyanobacteria with no 
detectable surface bloom, particularly given that cyanobacteria can 
move horizontally and vertically throughout the water column within 
hours (Qi et al., 2018; Qin et al., 2018). A surface bloom could have been 
present at the time of UCMR 4 data collection but not at the time of 
satellite overpass as it may have moved within the water column. 
Moreover, the ability of the satellite to detect picocyanobacteria is still 
uncertain; picocyanobacteria could have been observed during UCMR 4 
data collection, but not registered through the CI-cyano algorithm 
(Śliwińska-Wilczewska et al., 2018). 

4.2. Large-scale assessments of cyanobacterial frequency at source waters 

Monitoring and assessment of cyanobacterial blooms has not been 
routinely conducted in a nationally consistent manner with adequate 
spatial and temporal resolutions. Infrequent field monitoring has been 
conducted at the national level, including the National Lakes Assessment 

(NLA) occurring every five years in the United States (Blocksom et al., 
2016). Regional field monitoring has also been conducted, including 
across 142 Chinese lakes and reservoirs over two multi-year periods 
(Huang et al., 2020). Field monitoring can be both time- and 
cost-intensive, while satellite observations offer the potential for 
increased temporal and spatial resolutions when lakes are of sufficient 
size and in the absence of cloud cover or snow and ice (e.g., Coffer et al., 
2020, 2021; Duan et al., 2017; Zhang et al., 2017). 

Results presented here indicate that satellite imagery can be an 
important pre-screening tool that drinking water quality managers may 
use for early detection of cyanobacteria in their drinking water sources. 
Cost-effective and timely early detection of cyanobacteria in source 
waters can help inform critical treatment, monitoring, and management 
steps from PWSs, protecting drinking water quality from the risks posed 
by cyanotoxins and cyanobacteria and improving the quality of finished 
drinking water to ensure public health. However, field efforts such as the 
NLA, state, and local efforts are still needed to validate satellite obser
vations and measure toxins and other parameters not resolvable with 
satellite imagery, particularly in areas not observable using satellite 
imagery such as the land-water interface. 

Despite efforts to monitor cyanobacterial blooms across broad spatial 
and temporal scales, monitoring specific to drinking water sources is not 
routinely collected at the national level. In the United States, Clark et al. 
(2017) used satellite imagery from MERIS spanning 2008 through 2011 
to assess cyanobacterial bloom frequency at source waters in the states 
of Florida and Ohio. The average cyanobacterial frequency for all 
resolvable source waters in Florida was 30% and for Ohio, 5%. Using a 
different method to extract nearby satellite pixels at each intake and 
using a different satellite sensor, Clark et al. (2017) found Grand Lake to 
have the highest temporal frequency for the state of Ohio at 83% from 
2008 through 2011. 

This study presents the first large-scale assessment of cyanobacterial 
frequency and abundance at surface drinking water intakes across the 
United States. National-level assessments of cyanobacterial occurrence 

Fig. 5. A histogram of the effect size (γ) representing 
the length of observations needed for the current trend 
to exceed the residual variability at 36 source waters, 
selected based on a γ of less than 50 years. The median 
γ value was 10.04 years based on current sampling 
frequency. This value is slightly higher than the 
average satellite lifespan from the 1990′s of 8.6 years 
(Belward and Skøien, 2015) and nearly 8 years longer 
than the average water quality field campaign for 
chlorophyll measurements based on information from 
the Water Quality Portal (https://www.waterqualit 
ydata.us). Chlorophyll monitoring was used as a 
proxy for cyanobacteria monitoring as field monitoring 
for cyanobacteria typically does not report results to 
larger databases and is only available at the state or 
local level.   

Table 2 
Results of a short-term trend analysis using satellite imagery at five drinking 
water sources that exhibited a sustained trend (γ ≤ 4 years) based on monthly 
observations spanning June 2016 through April 2020; effect size is expressed in 
years. A negative change indicates a decrease in cyanobacterial frequency over 
the time period considered.  

Lake Sample 
size 

Kendall’s 
tau 

Percent change 
per year 

Effect size 
(γ) 

Morgan Lake, NM 47 0.4 60% 3 
Lake Overholser, OK 47 − 0.7 − 30% 1 
Grand Lake, OH 40 − 0.7 − 10% 3 
Choke Canyon 

Reservoir, TX 
47 − 0.4 − 20% 3 

Lake Eufaula, OK 47 − 0.5 − 20% 3  
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at drinking water sources have not been conducted through either field 
or satellite observations. Upon completion of data reporting, UCMR 4 
will serve as the first field-based dataset of cyanobacteria in source 
waters across the United States, while methods presented here can be 
used to monitor approximately 700 drinking water sources across 44 
states with consistent temporal coverage in the absence of cloud 
contamination or snow and ice cover. 

4.3. Assessing effect size of cyanobacterial abundance 

Anderson et al. (2002) indicated coastal systems in recent decades 
had increased in occurrence of toxic and otherwise harmful algal 
blooms, but did not provide quantitative evidence of this change. It was 

noted, however, that this increase could either reflect heightened sci
entific awareness or an actual increase in the number, magnitude, or 
frequency of blooms (Anderson, 1989). A lack of historical data was 
cited as a limitation for quantifying long-term change. He et al. (2016) 
also indicated the frequency of cyanobacterial blooms in freshwater 
systems is increasing. More recently, Huisman et al. (2018) summarized 
projected increases in cyanobacterial occurrence due to eutrophication, 
rising carbon dioxide levels, and changing climatic conditions. Despite 
repeated suggestions that cyanobacterial blooms have or will increase, 
few large-scale trend analyses have been performed to support this 
claim. 

Using over 200 years of sediment cores from northern hemisphere 
lakes, Taranu et al. (2015) suggested that cyanobacteria have increased 
substantially in almost 60% of lakes since the industrial revolution and 
that cyanobacteria have increased disproportionally compared to other 
phytoplankton. Using satellite imagery, Urquhart et al. (2017) analyzed 
changes in the spatial extent of cyanobacterial blooms from 2008 
through 2011 for large lakes in the states of California, Ohio, and 
Florida. Florida data indicated an increase in spatial extent of blooms 
but exhibited a γ of 4.1 over the 4-year time series, suggesting the 
observed trend did not quite statistically outweigh residual variability in 
the data. 

This study found that a median of over 10 years of observations was 
needed for observed changes to show a sustained trend outside of the 
residual variability in the data given current sampling frequency. For 
reference, the average satellite lifespan was 8.6 years in the 1990′s 
(Belward and Skøien, 2015) and the average water quality field 
campaign for chlorophyll monitoring lasts approximately 2.5 years. 
Belward and Skøien (2015) also summarized satellite lifespans for more 
recent decades, but these values were artificially reduced given that 
many of the sensors considered were at the beginning of their life cycles. 
The average length of water quality field monitoring was found by 
averaging the difference between start years and end years for all Water 
Quality Portal (https://www.waterqualitydata.us) datasets with a 
characteristic name “chlorophyll.” Chlorophyll monitoring was used as a 
proxy for cyanobacteria monitoring as field measurements for cyano
bacteria are often only available through state or local databases (U.S. 
EPA, 2020). 

OLCI completed its fourth full year of data collection in June 2020. 
The operational lifespan of Sentinel-3A is set to 7 years with consum
ables available for up to 12 years. An identical sensor is housed on ESA’s 
Sentinel-3B satellite platform, launched in 2018. Moving forward, ESA 
plans to ensure consistent, long-term coverage through the launch of 
Sentinel-3C and Sentinel-3D. Upon successful launch of all four satellites 
in the Sentinel-3 satellite series, mission continuity will then be expected 
for at least 25 years from the launch of Sentinel-3A. Thus, the Sentinel-3 
satellite constellation offers promise for providing sufficient temporal 
coverage for defensible, quantitative drinking water source trend 
assessment. 

Schaeffer et al. (2013) found that mission continuity is critical for 
end-users. Findings here also highlight the importance of long-term 
monitoring programs, both satellite-based and field campaigns, in 
order to defend or refute statements regarding large-scale changes in 
cyanobacterial frequency, extent, and abundance. Insufficient temporal 
coverage was a primary concern for this study with nearly all drinking 
water sources failing to achieve a γ less than the time period of obser
vations. Additionally, the median required time period of 10.04 years 
was based on an assumed sampling frequency and could be longer if the 
frequency of observations decreases compared to the reference 2016 
through 2020 period used here. This supports the need for continued, 
consistent monitoring to better understand long-term cyanobacterial 
bloom trends in drinking water sources. The planned constellation of 
Sentinel-3 satellites is expected to improve temporal coverage in the 
future. 

Despite the need for increased temporal coverage, source waters at 
five intakes did exhibit a sustained trend from 2016 to 2020, but these 

Fig. 6. Time series of average cyanobacterial abundance within 900 m of the 
drinking water intakes at Morgan Lake, NM; Lake Overholser, OK; Grand Lake, 
OH; Choke Canyon Reservoir, TX; and Lake Eufaula, OK. These five drinking 
water sources had an effect size less than the time period of observations (γ ≤ 4 
years) and were thus considered to have a sustained trend. The gray line rep
resents the Thiel-Sen slope accompanying the change detection. 
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trends cannot be extrapolated outside of this time period and are not 
indicative of ongoing changes. Morgan Lake is located on the Navajo 
Nation in northwest New Mexico. This source water exhibited the 
highest possible bloom frequency and was the only source water 
considered to increase in abundance. Lake Overholser is located in 
Oklahoma City, OK, and decreased in cyanobacterial abundance from 
2016 to 2020. Grand Lake in western Ohio once ranked in the 99th 
percentile for microcystins in the United States (U.S. EPA, 2009). While 
Jacquemin et al. (2018) found substantial improvements in water 
quality over the past decade, they concluded that this lake’s waters 
remained impaired. Choke Canyon Reservoir in southern Texas provides 
drinking water for the City of Corpus Christi, and Lake Eufaula, Okla
homa’s largest lake, provides drinking water to Eufaula, OK. At both of 
these source waters, changes were driven by much lower cyanobacterial 
abundance values in the last year of observations compared to the first 
three years. Temporal patterns at these sites resembled more of a step 
change rather than a continuous trend, but insufficient information 
exists to determine a potential cause of the sudden decline in cyano
bacterial abundances. At all sites, additional information would be 
needed to determine drivers of these changes given the short time period 
considered. 

4.4. Limitations 

While this study offers the first large-scale investigation of cyano
bacterial frequency and abundance at drinking water sources across the 
United States, there are several limitations that warrant consideration. 
Only drinking water intakes located in or near relatively large lakes were 
considered, and pixels that fell along the shoreline were discarded, 
meaning approximately 80% of all drinking water intakes were not 
studied. When considering a subset of these drinking water intakes for 
matching with UCMR 4 qualitative responses in drinking water sources, 
coverage was even lower as UCMR 4 sampling was ongoing through the 
end of 2020. This study only considered UCMR 4 data reported up to 
April 2020 and represented a portion of data collected up to November 
2019. The estimated PWS locations are based on the best available 
locational data provided by the states in SDWIS and are chosen to 
represent a PWS for this national-scale analysis. In some cases, this may 
cause discrepancies given the 100-m buffer used to assign a lake to each 
intake. Applying a similar analysis to finer resolution sensors such as 
Sentinel-2 at 20-m multispectral resolution or Landsat-8 at 30-m mul
tispectral resolution could improve spatial coverage. Sentinel-2 has the 
potential for quantifying chlorophyll (Gilerson et al., 2010; Pahlevan 
et al., 2020), and Landsat has shown promise for bloom monitoring (Ho 
et al., 2017; Oyama et al., 2015), but cyanobacteria-specific algorithms 
have yet to be validated for large-scale applications. The MERIS sensor 
onboard ESA’s Envisat can also be useful for retrospective analysis, with 
imagery available from 2002 through 2012. 

A 900-m buffer was selected to characterize source waters at each 
drinking water intake. This distance was chosen to include three, 300-m 
satellite pixels surrounding each intake. However, these pixels do not 
perfectly capture the source waters influencing each drinking water 
intake. To determine which 300-m pixels best characterize source wa
ters at each drinking water intake, information regarding the bathym
etry, depth of each intake, and the drawdown rate would be required as 
well as hydrodynamic modeling specific to each system. This informa
tion is unavailable across all 685 intakes, and, therefore, it is impossible 
to properly identify which satellite pixels are contributing to drinking 
water at any given time. Thus, a generalized buffer of 900 m was chosen 
for consistency across locations and time. 

Satellite observations of cyanobacterial frequency or abundance do 
not represent levels in finished drinking water. When investigating 
cyanobacterial abundance near these intakes, it is important to 
remember that this analysis focuses on source waters only. The quality 
of finished drinking water is a reflection of treatment practices used by 
the PWS in response to changes in intake water quality. For example, a 

2016 report found 43.9% of source waters in Ohio to exceed the U.S. 
EPA Health Advisory level of 0.3 µg/L total microcystins for children and 
vulnerable populations, but only 1.16% of treated drinking water sam
ples exceeded this threshold (AWWA, 2016), demonstrating effective 
treatment practices for the intakes considered. Moreover, satellite im
agery can only detect cyanobacteria, not the presence of cyanotoxins 
(Stumpf et al., 2016a), and it is possible for both a visible bloom to be 
present without cyanotoxins and cyanotoxins to be present without a 
visible bloom. This issue is further complicated by the presence and the 
possibility of the growth and regrowth of cyanobacteria within the 
treatment utility, potentially leading to toxin or taste and odor pro
duction even in the absence of a bloom in the source water (Almuh
taram et al., 2018; Greenstein et al., 2020). 

Several limitations exist in the acquisition of satellite imagery. Data 
gaps exist due to cloud cover, Sun glint contamination, and the presence 
of snow and ice. Northern latitude regions are particularly affected by 
lower data coverage in the winter months (Coffer et al., 2020), although 
during the cold season proliferation of cyanobacterial blooms is believed 
to be more limited (Ibelings et al., 2021). However, occasional blooms 
and in some cases cyanotoxins have been noted under ice (Bertilsson 
et al., 2013; Hampton et al., 2017; Üveges et al., 2012; Wejnerowski 
et al., 2018). Satellite images are acquired mid-day and only charac
terize cyanobacteria at the time of image acquisition. However, cyano
bacterial blooms can change throughout the day and from one day to 
another. The weekly composites used here preserve the week’s 
maximum CI-cyano value in an effort to capture any cyanobacterial 
bloom that may have occurred, but no information can be gathered or 
inferred outside the time of satellite image acquisition. Additionally, 
difficulties can arise in performing short-term trend analyses given 
limited observations. 

Satellites typically cannot detect benthic cyanobacteria except in the 
case of optically shallow water. However, benthic systems can 
contribute to contamination of drinking water sources (Gaget et al., 
2017). Moreover, drinking water intakes can be located at a water’s 
surface or at depths of up to 30 to 40 m (Hoeger et al., 2005), but the 
satellite signal only represents the top layer of the water column, typi
cally up to 2 m for red spectral bands in clear water (Mishra et al., 2005) 
and less than 2 m in more turbid waters (Wynne et al., 2010). This 
vertical offset can be important if using this information to inform 
drinking water management approaches. A vertical offset is not 
accounted for here and is difficult to address given that some facilities 
have multiple intake depths to accommodate changes in water level and 
water quality (U.S. EPA, 2016a). 

5. Conclusions 

This study used satellite imagery to detect cyanobacteria at nearly 
700 drinking water sources across the United States. Additionally, 
agreement between a subset of 22 of these source waters and visual 
observations extracted from UCMR 4 qualitative responses indicating 
the presence or absence of a visible surface algal bloom was analyzed. 
The following conclusions were reached:  

• A subset of UCMR 4 qualitative responses in drinking water sources 
spanning March 2018 through November 2019 and corresponding 
satellite-derived cyanobacteria detect and non-detect measurements 
achieved an overall agreement of 94% and a Kappa coefficient of 
0.70 across 84 observations. This demonstrates the utility for use of 
satellite imagery as a complement to ground-based measurements 
for assessing cyanobacterial occurrence at drinking water sources.  

• Across all resolvable drinking water sources, the majority of 
detectable cyanobacterial bloom frequencies for 2019 averaged less 
than 35%, but several outliers existed at higher frequencies reaching 
a maximum value of 100% for source waters at two drinking water 
intakes. 
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• Nearly all source waters analyzed did not have sufficient data for a 
trend analysis, as indicated by effect size statistics that were longer 
than the time period of observations. Instead, a decade of observa
tions would be needed, on average, for trends to outweigh residual 
variability in the data.  

• Five source waters demonstrated a short-term trend from June 2016 
through April 2020 with source waters at one intake increasing in 
cyanobacterial abundance over this time period and source waters at 
four intakes decreasing in cyanobacterial abundance. However, 
conclusions are only valid within the observed time period and 
cannot be extrapolated to support long-term trends at any source 
waters. Additional data are needed to determine drivers of these 
changes. 
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